

Date: 09-11-2024

Dept. No.

Max. : 100 Marks

Time: 09:00 am-12:00 pm

SECTION A - K1 (CO1)

Answer ALL the Questions - (10 x 1 = 10)

1. Answer the following

- a) If the polar of P with respect to a parabola passes through Q, point out that polar of Q passes through P.
- b) Define rectangular hyperbola.
- c) Define skew lines.
- d) Find the equation of the sphere with centre $(-1, 2, -3)$ and radius 3 units.
- e) Define a cone.

2. Fill in the blanks

- a) If e is the eccentricity of the conic, where $e < 1$, then the conic generated is _____.
- b) The hyperbola which has the asymptotes $lx+my+n=0$ and $l_1x+m_1y+n_1=0$ is _____.
- c) The direction cosines of the Y-axis is _____.
- d) If the plane passes through the centre of the sphere, the intersection of plane and sphere is called a _____.
- e) The fixed straight line in a right circular cone is called _____ of the cone.

SECTION A - K2 (CO1)

Answer ALL the Questions (10 x 1 = 10)

3. MCQ

- a) If the pole of parabola is at the focus, say $(a, 0)$, then the polar equation of the pole is
(i) $x+a=0$ (ii) $x-a=0$ (iii) $y+a=0$ (iv) $y-a=0$
- b) The distance between the points (r_1, θ_1) and (r_2, θ_2) is
(i) $r_1^2+r_2^2+2r_1r_2\cos(\theta_1-\theta_2)$ (ii) $r_1^2+r_2^2-2r_1r_2\cos(\theta_1-\theta_2)$
(iii) $r_1^2+r_2^2+2r_1r_2\cos(\theta_1)$ (iv) $r_1^2+r_2^2-2r_1r_2\cos(\theta_2)$
- c) Let (l_1, m_1, n_1) and (l_2, m_2, n_2) be the direction cosines of two lines and θ be the angle between them. Then the equation $l_1l_2+m_1m_2+n_1n_2=0$ is the condition for the lines to be
(i) parallel (ii) perpendicular (iii) non-intersecting (iv) intersecting
- d) The center of the sphere $x^2+y^2+z^2+2x-4y+6z+5=0$ is
(i) $(-1, 2, -3)$ (ii) $(-1, -2, 3)$ (iii) $(1, -2, -3)$ (iv) $(1, 2, 3)$

- e) Any plane which intersects the cylinder whose equation is of _____ degree is a conic.
(i) First (ii) Second (iii) Third (iv) Fourth

4. True or False

- a) If p be the perpendicular on the tangent at P from the center of an ellipse, then $p \cdot CD = ab$.
- b) The equation of the asymptotes does not differ from that of the hyperbola only in the constant term.
- c) Two straight non-intersecting lines in space are called non-skew lines.

d)	The plane passing through the centre of the sphere is called a circle.
e)	A surface generated by a straight line which passes through a fixed point and makes a constant angle with a fixed straight line through the fixed point is a cylinder.

SECTION B - K3 (CO2)

Answer any TWO of the following

(2 x 10 = 20)

5. Derive the equation of pair of tangents to the parabola $y^2 = 4ax$ from the point (x_1, y_1) .
6. Find the asymptotes of the hyperbola $3x^2 - 5xy - 2y^2 + 17x + y + 14 = 0$.
7. Discover the equation of the plane passing through the points $(2, 2, 1)$, $(2, 3, 2)$ and $(-1, 3, 1)$.
8. Examine the equation of the cone with vertex O and base curve, the conic in which the surface $ax^2 + by^2 + cz^2 = 1$ is cut by the plane $l_1x + m_1y + n_1z = p$.

SECTION C – K4 (CO3)

Answer any TWO of the following

(2 x 10 = 20)

9. Examine the tangent to a rectangular hyperbola terminated by its asymptotes, is bisected at the point of contact and encloses triangle of constant area.
10. Derive the equation for a rectangular hyperbola, referring to its asymptotes as axes.
11. Show that the lines $\frac{x+1}{-3} = \frac{y+10}{8} = \frac{z-1}{2}$ and $\frac{x+3}{-4} = \frac{y+1}{7} = \frac{z-4}{1}$ are coplanar. Find also the point of intersection and the plane through them.
12. Find the equation of sphere which passes through the circle $x^2 + y^2 + z^2 - 2x - 4y = 0$, $x + 2y + 3z = 8$ and touches the plane $4x + 3y = 25$.

SECTION D – K5 (CO4)

Answer any ONE of the following

(1 x 20 = 20)

13. (a) Define conjugate diameter of an ellipse and examine whether the product of the focal distance of a point on an ellipse is equal to the square of the semi-diameter which is conjugate to the diameter through the point.
(b) Investigate this statement: The locus of midpoints of chords of a parabola which subtend a right angle at the vertex is another parabola whose latus rectum is half the latus rectum of the parabola.
(10 + 10)
14. (a) Analyze and write down the equation of orthogonal projection of the line $\frac{x-2}{4} = \frac{y-1}{2} = \frac{z-4}{3}$ on to the plane $8x + 2y + 9z - 1 = 0$.
(b) Determine the equation of the enveloping cylinder of the surface $ax^2 + by^2 + cz^2 = 1$ having the generator parallel to $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$.
(10 + 10)

SECTION E – K6 (CO5)

Answer any ONE of the following

(1 x 20 = 20)

15. (a) Trace the curve $\frac{10}{r} = 3\cos\theta + 4\sin\theta + 5$.
(b) Compute the symmetrical form of the line $3x - 2y + z - 1 = 0 = 5x + 4y - 6z - 2$.
16. (a) Find the equation of the sphere through the four points $(2, 3, 1)$, $(5, -1, 2)$, $(4, 3, -1)$ & $(2, 5, 3)$.
(b) Find the bisector of the acute angle between the planes $x + 2y + 2z - 3 = 0$ and $3x + 4y + 12z + 1 = 0$.
(10 + 10)

\$\$\$\$\$\$\$\$\$\$\$\$\$